3,639 research outputs found

    Deciding the Winner of an Arbitrary Finite Poset Game is PSPACE-Complete

    Full text link
    A poset game is a two-player game played over a partially ordered set (poset) in which the players alternate choosing an element of the poset, removing it and all elements greater than it. The first player unable to select an element of the poset loses. Polynomial time algorithms exist for certain restricted classes of poset games, such as the game of Nim. However, until recently the complexity of arbitrary finite poset games was only known to exist somewhere between NC^1 and PSPACE. We resolve this discrepancy by showing that deciding the winner of an arbitrary finite poset game is PSPACE-complete. To this end, we give an explicit reduction from Node Kayles, a PSPACE-complete game in which players vie to chose an independent set in a graph

    Laser-generated plasma as a spectroscopic light source

    Get PDF
    Laser generated plasma as spectroscopic light sourc

    Words with the Maximum Number of Abelian Squares

    Full text link
    An abelian square is the concatenation of two words that are anagrams of one another. A word of length nn can contain Θ(n2)\Theta(n^2) distinct factors that are abelian squares. We study infinite words such that the number of abelian square factors of length nn grows quadratically with nn.Comment: To appear in the proceedings of WORDS 201

    Game saturation of intersecting families

    Get PDF
    We consider the following combinatorial game: two players, Fast and Slow, claim kk-element subsets of [n]={1,2,...,n}[n]=\{1,2,...,n\} alternately, one at each turn, such that both players are allowed to pick sets that intersect all previously claimed subsets. The game ends when there does not exist any unclaimed kk-subset that meets all already claimed sets. The score of the game is the number of sets claimed by the two players, the aim of Fast is to keep the score as low as possible, while the aim of Slow is to postpone the game's end as long as possible. The game saturation number is the score of the game when both players play according to an optimal strategy. To be precise we have to distinguish two cases depending on which player takes the first move. Let gsatF(In,k)gsat_F(\mathbb{I}_{n,k}) and gsatS(In,k)gsat_S(\mathbb{I}_{n,k}) denote the score of the saturation game when both players play according to an optimal strategy and the game starts with Fast's or Slow's move, respectively. We prove that Ωk(nk/3−5)≀gsatF(In,k),gsatS(In,k)≀Ok(nk−k/2)\Omega_k(n^{k/3-5}) \le gsat_F(\mathbb{I}_{n,k}),gsat_S(\mathbb{I}_{n,k}) \le O_k(n^{k-\sqrt{k}/2}) holds

    SAMNet: a network-based approach to integrate multi-dimensional high throughput datasets

    Get PDF
    The rapid development of high throughput biotechnologies has led to an onslaught of data describing genetic perturbations and changes in mRNA and protein levels in the cell. Because each assay provides a one-dimensional snapshot of active signaling pathways, it has become desirable to perform multiple assays (e.g. mRNA expression and phospho-proteomics) to measure a single condition. However, as experiments expand to accommodate various cellular conditions, proper analysis and interpretation of these data have become more challenging. Here we introduce a novel approach called SAMNet, for Simultaneous Analysis of Multiple Networks, that is able to interpret diverse assays over multiple perturbations. The algorithm uses a constrained optimization approach to integrate mRNA expression data with upstream genes, selecting edges in the protein–protein interaction network that best explain the changes across all perturbations. The result is a putative set of protein interactions that succinctly summarizes the results from all experiments, highlighting the network elements unique to each perturbation. We evaluated SAMNet in both yeast and human datasets. The yeast dataset measured the cellular response to seven different transition metals, and the human dataset measured cellular changes in four different lung cancer models of Epithelial-Mesenchymal Transition (EMT), a crucial process in tumor metastasis. SAMNet was able to identify canonical yeast metal-processing genes unique to each commodity in the yeast dataset, as well as human genes such as ÎČ-catenin and TCF7L2/TCF4 that are required for EMT signaling but escaped detection in the mRNA and phospho-proteomic data. Moreover, SAMNet also highlighted drugs likely to modulate EMT, identifying a series of less canonical genes known to be affected by the BCR-ABL inhibitor imatinib (Gleevec), suggesting a possible influence of this drug on EMT.National Institutes of Health (U.S.) (Grant U54CA112967)National Institutes of Health (U.S.) (Grant R01GN089903)National Science Foundation (U.S.) (Award DB1-0821391)Massachusetts Institute of Technology. Undergraduate Research Opportunities Progra

    Construction and Expected Performance of the Hadron Blind Detector for the PHENIX Experiment at RHIC

    Get PDF
    A new Hadron Blind Detector (HBD) for electron identification in high density hadron environment has been installed in the PHENIX detector at RHIC in the fall of 2006. The HBD will identify low momentum electron-positron pairs to reduce the combinatorial background in the e+e−e^{+}e^{-} mass spectrum, mainly in the low-mass region below 1 GeV/c2^{2}. The HBD is a windowless proximity-focusing Cherenkov detector with a radiator length of 50 cm, a CsI photocathode and three layers of Gas Electron Multipliers (GEM). The HBD uses pure CF4_{4} as a radiator and a detector gas. Construction details and the expected performance of the detector are described.Comment: QM2006 proceedings, 4 pages 3 figure

    Comparison of nuclear transport models with 800A-MeV La + La data

    Get PDF
    Nuclear transport models including density- and momentum-dependent mean-field effects are compared to intranuclear-cascade models and tested on recent data on inclusive p-like cross sections for 800A-MeV La+La. We find a remarkable agreement between most model calculations but a systematic disagreement with the measured yield at 20°, possibly indicating a need for modification of nuclear transport properties at high densities

    Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A Hadron Blind Detector (HBD) has been developed, constructed and successfully operated within the PHENIX detector at RHIC. The HBD is a Cherenkov detector operated with pure CF4. It has a 50 cm long radiator directly coupled in a window- less configuration to a readout element consisting of a triple GEM stack, with a CsI photocathode evaporated on the top surface of the top GEM and pad readout at the bottom of the stack. This paper gives a comprehensive account of the construction, operation and in-beam performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method

    A Hadron Blind Detector for the PHENIX Experiment

    Full text link
    A novel Hadron Blind Detector (HBD) has been developed for an upgrade of the PHENIX experiment at RHIC. The HBD will allow a precise measurement of electron-positron pairs from the decay of the light vector mesons and the low-mass pair continuum in heavy-ion collisions. The detector consists of a 50 cm long radiator filled with pure CF4 and directly coupled in a windowless configuration to a triple Gas Electron Multiplier (GEM) detector with a CsI photocathode evaporated on the top face of the first GEM foil.Comment: 4 pages, 3 figures, Quark Matter 2005 conference proceeding

    A concise review on THGEM detectors

    Get PDF
    We briefly review the concept and properties of the Thick GEM (THGEM); it is a robust, high-gain gaseous electron multiplier, manufactured economically by standard printed-circuit drilling and etching technology. Its operation and structure resemble that of GEMs but with 5 to 20-fold expanded dimensions. The millimeter-scale hole-size results in good electron transport and in large avalanche-multiplication factors, e.g. reaching 10^7 in double-THGEM cascaded single-photoelectron detectors. The multiplier's material, parameters and shape can be application-tailored; it can operate practically in any counting gas, including noble gases, over a pressure range spanning from 1 mbar to several bars; its operation at cryogenic (LAr) conditions was recently demonstrated. The high gain, sub-millimeter spatial resolution, high counting-rate capability, good timing properties and the possibility of industrial production capability of large-area robust detectors, pave ways towards a broad spectrum of potential applications; some are discussed here in brief.Comment: 8 pages, 11 figures; Invited Review at INSTR08, Novosibirsk, Feb 28-March 5 200
    • 

    corecore